Telegram Group & Telegram Channel
Какие стратегии подбора гиперпараметров вы знаете?

Можно назвать три стратегии:

✔️Grid Search
При таком подходе для каждого гиперпараметра пользователю необходимо вручную указать список значений, которые алгоритм сможет опробовать. Далее модель обучается, используя каждую комбинацию гиперпараметров, и возвращает комбинацию, которая даёт оптимальный результат. Этот подход может быть довольно затратным в вычислительном отношении.
✔️Случайный поиск
Этот подход похож на Grid Search, но отличается тем, что вместо указания того, какие значения следует проверять для каждого гиперпараметра, даётся верхняя и нижняя граница значений для каждого гиперпараметра. Затем с равномерной вероятностью выбираются случайные значения в пределах этих границ. Далее пользователю возвращается лучшая комбинация.
✔️Байесовская оптимизация
Этот подход основан на теореме Байеса. Эта теорема описывает вероятность наступления события на основе имеющейся информации. При Байесовской оптимизации строится вероятностная модель из набора гиперпараметров, который оптимизирует определённый показатель. Также используется регрессионный анализ для итеративного выбора наилучшего набора гиперпараметров.

#junior
#middle



tg-me.com/ds_interview_lib/161
Create:
Last Update:

Какие стратегии подбора гиперпараметров вы знаете?

Можно назвать три стратегии:

✔️Grid Search
При таком подходе для каждого гиперпараметра пользователю необходимо вручную указать список значений, которые алгоритм сможет опробовать. Далее модель обучается, используя каждую комбинацию гиперпараметров, и возвращает комбинацию, которая даёт оптимальный результат. Этот подход может быть довольно затратным в вычислительном отношении.
✔️Случайный поиск
Этот подход похож на Grid Search, но отличается тем, что вместо указания того, какие значения следует проверять для каждого гиперпараметра, даётся верхняя и нижняя граница значений для каждого гиперпараметра. Затем с равномерной вероятностью выбираются случайные значения в пределах этих границ. Далее пользователю возвращается лучшая комбинация.
✔️Байесовская оптимизация
Этот подход основан на теореме Байеса. Эта теорема описывает вероятность наступления события на основе имеющейся информации. При Байесовской оптимизации строится вероятностная модель из набора гиперпараметров, который оптимизирует определённый показатель. Также используется регрессионный анализ для итеративного выбора наилучшего набора гиперпараметров.

#junior
#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/161

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Библиотека собеса по Data Science | вопросы с собеседований from ua


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA